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Today’s Lecture

 Networking Programming
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OSI Model vs TCP/IP Model

 A networking model conceptually describes how computer systems can 
communicate with each other.

 Open System Interconnect (OSI) and TCP/IP are two types of models.

 TCP/IP Model is simpler than OSI. It was actually developed after the 
TCP/IP protocol suite (protocol gives more specifics than a model).
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Using a Protocol to Mail 
Something

 Some companies use a certain set of packaging when they 
mail something to a customer.

 For example, you might want to mail a ring using a certain 
setup of packaging.

 The ring goes in an envelope.

 The envelope goes in a ziplock bag.

 The ziplock bag goes in bubble wrap.

 The bubble wrap goes in a box.

 For example…
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Mailing a Ring Using a Protocol
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Receiving a Ring Using a Protocol
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TCP/IP Layering and Sending Data

 The TCP/IP model works similarly to how the ring was sent and received.

 When sending, data at a higher level is "packaged" and given to the next 
lowest layer.

 When receiving, data at a lower level is "unpacked" and sent up one layer.
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TCP/IP Layering and Sending Data

 Data to send is given to the application layer.

 The application layer adds a header and passes it to the transport layer.

 Each layer in the model adds its header and gives the whole piece to the next 
lower layer in the model.
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TCP/IP Protocol Suites

TCP/IP Protocol Suites

 The TCP/IP model is a conceptual description.

 The TCP/IP protocol suites are more specific.
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TCP

Transmissions Control Protocol (TCP)

 Connection-based

 Has connection overhead
◦ Must open a connection

◦ Must make sure messages were correctly received

◦ Must terminate a connection

 Allows data to be sent in two directions over the 
connection.

 Has built-in error checking to make sure that data was sent 
correctly.

 Resends data if there was an error in transmission.
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UDP

Universal Datagram Protocol (UDP)

 Connectionless

 Less overhead
◦ Does not make connections

◦ Does not make sure message was correctly received

◦ Does not terminate connections 

 Data is sent in only one direction.

 Has small amount of error checking.

 Does not resend data.

 Good for real time communications. For example, send out 
a message giving the current time (no need to resend this 
type of message because the data will be "stale" if resent). 
Also, good for live streaming video, real-time online 
gaming (losing a little data won't really hurt and UDP is 
faster than TCP).
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Sockets

 Now we will cover sockets…
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Socket

Socket

 Endpoint of communication.

 Makes network programming similar to file I/O.

 You can read/write to a socket in a similar way 
that you read/write to a file.

 Socket types

◦ Stream

◦ Datagram
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Stream vs Datagram Sockets

 Stream sockets 
◦ Based on TCP

◦ Establishes a connection

◦ Allows two-way communication

◦ More reliable

◦ Slower than datagram

 Datagram sockets 
◦ Based on UDP

◦ Connectionless

◦ Only one way communication allowed

◦ Less reliable

◦ Faster than stream
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Basic Stream Sockets

 The following slides detail a basic stream socket 
client/server setup…
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Stream Sockets - Connections

 Stream sockets are connection based.

 With stream sockets there is a client and server.

 The server "listens" for connection requests from 
clients (other computers).

 When a client requests a connection, the server 
generates a new socket connected to that client.
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Server Socket Listening

 A server socket must be created to "listen" for client connections.

 The ServerSocket class is used to receive client connection requests. 

 You must call the accept() method on the server socket to actually "listen"
for incoming client requests.

 accept() blocks (does not move on to the next instruction) until a client 
connection request is made.

 accept() will create a Socket instance for the client when it receives a 
connection request.

ServerSocket servSocket = new ServerSocket(55555);

Socket clientSocket = servSocket.accept();
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Socket Client Connect

 A client application will request a connection from the 
server.

 The client application must know the server's IP address 
and the port that the server is listening on.

String hostIP = "127.0.0.1";

int hostPort = 55555;

Socket socket = new Socket(hostIP, hostPort);
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Receive Data Using Socket

 Both the client and server use the same code to receive data.

 Get the input stream from the socket (only need to do once).

 Read data from the input stream.

 Important – Reading from the socket returns null if the other 
socket it is connected to closes.

InputStream input = socket.getInputStream();

BufferedReader reader = new BufferedReader(new InputStreamReader(input));

String data;

data = reader.readLine(); 
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Send Data Using Socket

 Both the client and server use the same code to send data.

 First get the output stream from the client socket.

 Next, write data to the output stream.

OutputStream output = socket.getOutputStream();

PrintWriter writer = new PrintWriter(output, true);

writer.println("This is data");
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Close Sockets and Streams

 When you are done with a socket close the 
following:
◦ Socket input stream

◦ Socket output stream

◦ The socket itself (do this last)
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Multithreading and Sockets –
Server Connections

Server Connections

 The server thread as previously described could only 
handle one client.

 If we use multiple threads in the server, we can allow the 
server to handle multiple clients.

 The server should spawn a new thread for each client 
connection so it can handle interactions between each 
client separately.
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Multithreading and Sockets –
Receiving Data

Receiving Data

 An application can create a thread that is dedicated to 
receiving messages from a socket.

 The main thread will no longer need to block when 
receiving messages on the socket.

 Use an executor for the threads so the threads can be shut 
down if the application closes.

 Message Thread Writing to GUI. 

◦ Worker Threads do not have access to GUI controls on the 
main thread.

◦ If the thread receiving messages must update the GUI special 
code needs to be added.

◦ For example, in JavaFX you will need to use 
Platform.runLater(…) to update controls in the GUI thread.
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End of Slides

 End of slides
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