
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department



Today’s Lecture

 Networking Programming

© 2021 Arthur Hoskey. All 
rights reserved.



OSI Model vs TCP/IP Model

 A networking model conceptually describes how computer systems can 
communicate with each other.

 Open System Interconnect (OSI) and TCP/IP are two types of models.

 TCP/IP Model is simpler than OSI. It was actually developed after the 
TCP/IP protocol suite (protocol gives more specifics than a model).

© 2021 Arthur Hoskey. All 
rights reserved.

Physical

Network

Datalink

Transport

Presentation

Session

Application

OSI 

Model

Network

Internet

Transport

Application

TCP/IP 

Model



Using a Protocol to Mail 
Something

 Some companies use a certain set of packaging when they 
mail something to a customer.

 For example, you might want to mail a ring using a certain 
setup of packaging.

 The ring goes in an envelope.

 The envelope goes in a ziplock bag.

 The ziplock bag goes in bubble wrap.

 The bubble wrap goes in a box.

 For example…

© 2021 Arthur Hoskey. All 
rights reserved.



Mailing a Ring Using a Protocol
© 2021 Arthur Hoskey. All 
rights reserved.

Box

Ziplock Bag

Bubble Wrap

Envelope

Ring

Ring

1. Put ring in 

an envelope 

Envelope

Ring

2. Put envelope in ziplock bag 

(ring is also in ziplock bag 

since it is in the envelope)

Ziplock Bag

Envelope

Ring

3. Put ziplock bag in bubble wrap 

(this means the envelope and ring 

are also in the bubble wrap)

Bubble Wrap

Ziplock Bag

Envelope

Ring

4. Put bubble wrap in box 

(everything in the bubble wrap is 

in the box too)

The box gets sent

Keep adding layers 

of packaging



Receiving a Ring Using a Protocol
© 2021 Arthur Hoskey. All 
rights reserved.

Box

Ziplock Bag

Bubble Wrap

Envelope

Ring

Ring

4. Open envelope 

(remove ring)

Envelope

Ring

3. Open ziplock bag 

(remove envelope)

Ziplock Bag

Envelope

Ring

2. Open bubble wrap (remove 

ziplock bag)

Bubble Wrap

Ziplock Bag

Envelope

Ring

1. Open box (remove bubble wrap)
Keep unpacking 

layers



TCP/IP Layering and Sending Data

 The TCP/IP model works similarly to how the ring was sent and received.

 When sending, data at a higher level is "packaged" and given to the next 
lowest layer.

 When receiving, data at a lower level is "unpacked" and sent up one layer.

© 2021 Arthur Hoskey. All 
rights reserved.

Network

Internet

Transport

Application

TCP/IP Model

Box

Bubble Wrap

Ziplock Bag

Envelope

Mailing Ring



TCP/IP Layering and Sending Data

 Data to send is given to the application layer.

 The application layer adds a header and passes it to the transport layer.

 Each layer in the model adds its header and gives the whole piece to the next 
lower layer in the model.

© 2021 Arthur Hoskey. All 
rights reserved.

Network

Internet

Transport

Application

TCP/IP Model

Data to send

Internet layer data (includes all data from all layers above)Network 
Layer Header

Transport layer data (includes all data from all 
layers above)

Internet 
Layer Header

Application layer data (includes 
the header and data to send)

Transport 
Layer Header

Application 
Layer Header

Data to send



TCP/IP Protocol Suites

TCP/IP Protocol Suites

 The TCP/IP model is a conceptual description.

 The TCP/IP protocol suites are more specific.

© 2021 Arthur Hoskey. All 
rights reserved.

Ethernet etc…

IPv4, IPv6 etc…

UDP

HTTP, FTP 
encryption etc…

Ethernet etc…

IPv4, IPv6 etc…

TCP

HTTP, FTP, 
encryption etc…

TCP/IP Protocol 

Suite with TCP

TCP/IP Protocol 

Suite with UDP

Network

Internet

Transport

Application

TCP/IP Model

These 

stacks differ 

in the 

transport 

layer



TCP

Transmissions Control Protocol (TCP)

 Connection-based

 Has connection overhead
◦ Must open a connection

◦ Must make sure messages were correctly received

◦ Must terminate a connection

 Allows data to be sent in two directions over the 
connection.

 Has built-in error checking to make sure that data was sent 
correctly.

 Resends data if there was an error in transmission.

© 2021 Arthur Hoskey. All 
rights reserved.



UDP

Universal Datagram Protocol (UDP)

 Connectionless

 Less overhead
◦ Does not make connections

◦ Does not make sure message was correctly received

◦ Does not terminate connections 

 Data is sent in only one direction.

 Has small amount of error checking.

 Does not resend data.

 Good for real time communications. For example, send out 
a message giving the current time (no need to resend this 
type of message because the data will be "stale" if resent). 
Also, good for live streaming video, real-time online 
gaming (losing a little data won't really hurt and UDP is 
faster than TCP).

© 2021 Arthur Hoskey. All 
rights reserved.



Sockets

 Now we will cover sockets…

© 2021 Arthur Hoskey. All 
rights reserved.



Socket

Socket

 Endpoint of communication.

 Makes network programming similar to file I/O.

 You can read/write to a socket in a similar way 
that you read/write to a file.

 Socket types

◦ Stream

◦ Datagram

© 2021 Arthur Hoskey. All 
rights reserved.



Stream vs Datagram Sockets

 Stream sockets 
◦ Based on TCP

◦ Establishes a connection

◦ Allows two-way communication

◦ More reliable

◦ Slower than datagram

 Datagram sockets 
◦ Based on UDP

◦ Connectionless

◦ Only one way communication allowed

◦ Less reliable

◦ Faster than stream

© 2021 Arthur Hoskey. All 
rights reserved.



Basic Stream Sockets

 The following slides detail a basic stream socket 
client/server setup…

© 2021 Arthur Hoskey. All 
rights reserved.



Stream Sockets - Connections

 Stream sockets are connection based.

 With stream sockets there is a client and server.

 The server "listens" for connection requests from 
clients (other computers).

 When a client requests a connection, the server 
generates a new socket connected to that client.

© 2021 Arthur Hoskey. All 
rights reserved.

Server

1. "Listens" for client 
connection requests

3. Creates stream 
socket to a client 
allowing two-way 

communication (when 
requested by client)

Client

2. Initiates a 
connection 

request

2. Request connection

3. Stream socket to client (two way)



Server Socket Listening

 A server socket must be created to "listen" for client connections.

 The ServerSocket class is used to receive client connection requests. 

 You must call the accept() method on the server socket to actually "listen"
for incoming client requests.

 accept() blocks (does not move on to the next instruction) until a client 
connection request is made.

 accept() will create a Socket instance for the client when it receives a 
connection request.

ServerSocket servSocket = new ServerSocket(55555);

Socket clientSocket = servSocket.accept();

© 2021 Arthur Hoskey. All 
rights reserved.

Create a server socket on port 55555 (call 

to new requires a try/catch, left out to 

save space on slide)

Stream Sockets – Server Listening

accept() makes server socket 

"listen" for client connections
accept() returns a socket instance 

connected to the client



Socket Client Connect

 A client application will request a connection from the 
server.

 The client application must know the server's IP address 
and the port that the server is listening on.

String hostIP = "127.0.0.1";

int hostPort = 55555;

Socket socket = new Socket(hostIP, hostPort);

© 2021 Arthur Hoskey. All 
rights reserved.

The call to new requests a 

connection to the server 

(the constructor will do the 

connecting)

Stream Sockets – Client Connect

127.0.0.1 is the local host address. A 

real application would change this to 

the address of the server machine.

The Socket instance returned by 

new is connected and ready to 

use (new will throw an exception if 

it fails, needs to be in a try/catch)



Receive Data Using Socket

 Both the client and server use the same code to receive data.

 Get the input stream from the socket (only need to do once).

 Read data from the input stream.

 Important – Reading from the socket returns null if the other 
socket it is connected to closes.

InputStream input = socket.getInputStream();

BufferedReader reader = new BufferedReader(new InputStreamReader(input));

String data;

data = reader.readLine(); 

© 2021 Arthur Hoskey. All 
rights reserved.

Get input stream 

from the socket

Stream Sockets – Receive Data

Wrap input stream in a 

BufferedReader to allow 

for reading lines of text

Reads data from the input stream 

(data will be a null reference if the 

other socket closed)



Send Data Using Socket

 Both the client and server use the same code to send data.

 First get the output stream from the client socket.

 Next, write data to the output stream.

OutputStream output = socket.getOutputStream();

PrintWriter writer = new PrintWriter(output, true);

writer.println("This is data");

© 2021 Arthur Hoskey. All 
rights reserved.

Get output stream 

from the socket

Stream Sockets – Send Data

Write data to the 

output stream 

(this is writing 

to the socket)

Wrap the output stream in a 

PrintWriter to allow for writing 

formatted output (not just byte 

data)



Close Sockets and Streams

 When you are done with a socket close the 
following:
◦ Socket input stream

◦ Socket output stream

◦ The socket itself (do this last)

© 2021 Arthur Hoskey. All 
rights reserved.

Stream Sockets – Close



Multithreading and Sockets –
Server Connections

Server Connections

 The server thread as previously described could only 
handle one client.

 If we use multiple threads in the server, we can allow the 
server to handle multiple clients.

 The server should spawn a new thread for each client 
connection so it can handle interactions between each 
client separately.

© 2021 Arthur Hoskey. All 
rights reserved.



Multithreading and Sockets –
Receiving Data

Receiving Data

 An application can create a thread that is dedicated to 
receiving messages from a socket.

 The main thread will no longer need to block when 
receiving messages on the socket.

 Use an executor for the threads so the threads can be shut 
down if the application closes.

 Message Thread Writing to GUI. 

◦ Worker Threads do not have access to GUI controls on the 
main thread.

◦ If the thread receiving messages must update the GUI special 
code needs to be added.

◦ For example, in JavaFX you will need to use 
Platform.runLater(…) to update controls in the GUI thread.

© 2021 Arthur Hoskey. All 
rights reserved.



End of Slides

 End of slides

© 2021 Arthur Hoskey. All 
rights reserved.


	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: OSI Model vs TCP/IP Model
	Slide 4: Using a Protocol to Mail Something
	Slide 5: Mailing a Ring Using a Protocol
	Slide 6: Receiving a Ring Using a Protocol
	Slide 7: TCP/IP Layering and Sending Data
	Slide 8: TCP/IP Layering and Sending Data
	Slide 9: TCP/IP Protocol Suites
	Slide 10: TCP
	Slide 11: UDP
	Slide 12: Sockets
	Slide 13: Socket
	Slide 14: Stream vs Datagram Sockets
	Slide 15: Basic Stream Sockets
	Slide 16: Stream Sockets - Connections
	Slide 17: Stream Sockets – Server Listening
	Slide 18: Stream Sockets – Client Connect
	Slide 19: Stream Sockets – Receive Data
	Slide 20: Stream Sockets – Send Data
	Slide 21: Stream Sockets – Close
	Slide 22: Multithreading and Sockets – Server Connections
	Slide 23: Multithreading and Sockets – Receiving Data
	Slide 24: End of Slides

